
GROUP THEORY 2024 - 25, SOLUTION SHEET 9

Exercise 1. To do yourself. Ask the assistant if something is unclear.

Exercise 2. Suppose that G admits a unique Sylow p-subgroup P . As gPg−1 is a subgroup
of the same cardinality as P for all g ∈ G, we must have that gPg−1 = P for all g ∈ G, i.e. P
is normal in G. Conversely, suppose that P is a Sylow p-subgroup that is normal in G. Let Q
be another Sylow p-subgroup. Then there exists g ∈ G such that Q = gPg−1 = P , hence the
desired unicity.

Exercise 3. As the order of any element of P is a power of p and the order of any element
of Q is a power of q, we have that P

⋂
Q = 1. Moreover, P and Q are normal in G by the

preceding exercise. By the 2nd isomorphism theorem, we have PQ/Q ∼= P/(P
⋂
Q) and thus

|PQ| = |P ||Q|
|P

⋂
Q| = |P ||Q| = |G|. We thus obtain that PQ = G. We conclude by using the fact

that if P,Q are normal in G, PQ = G and P
⋂
Q = 1, then G ∼= P ×Q.

Exercise 4. Observe first that |A5| = 60 = 22 · 3 · 5. It follows from Sylow’s third theorem
that n2, the number of Sylow 2-subgroups of A5, satisfies n2 = [A5, NA5(P )] for any Sylow
2-subgroup P . The order of Sylow 2-subgroups are the subgroups of order 4. We consider the
Klein four-group V4 = {1, (12)(34), (13)(24), (14)(23)}, seen in exercise 4, sheet 7, which satisfies

V4 ◁ A4 ≤ A5.

This a Sylow 2-subgroup of A5. The permutations of this group all fix the element 5, and there
are four other subgroups of this form, which fix the elements 1, 2, 3 and 4 respectively. Hence
there are at least five Sylow 2-subgroups of A5. But because V4 ◁ A4 is normal, we have that
A4 ≤ NA5(V4). It follows that n2 = 60/|NA5(V4)| ≤ 60/|A4| = 60/12 = 5. We found five
different Sylow 2-subgroups of A5, and we just argued that there cannot be more that five of
them, which proves that we found them all.

Exercise 5. The exercise follows from the first Sylow theorem and the following lemma applied
to a Sylow p− subgroup:

Lemma 5.1: Let G be a group of order pn for some n > 0 then G contains a normal subgroup
of order pk for all k such that 0 ≤ k ≤ n.

Proof of Lemma: Recall that a group of order pr has a non-trivial centre for all r > 0
(cf. Solution of Sheet 4 exercise 2.1). Using induction on n we obtain the lemma for G/Z(G).
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We can then conclude by induction and the correspondence theorem. We let the reader fill in
the requisite details. □

Exercise 6. (1) Let P be any Sylow p− subgroup of G and consider the action of H on the
set of left co-sets G/P by left multiplication. Therefore we have the following equation:

|G/P | =
∑

Orbits H·x

|H|
|StabH(x)|

.

Note that |G/P | is an integer co-prime to p since P is a Sylow p− subgroup. Since
p | |H| This implies that there exists gP ∈ G/P with StabH(gP ) = H. Therefore
hgP = gP for all h ∈ H and hence gHg−1 ⊂ P . This shows that H ⊂ gPg−1 which is
a Sylow p− subgroup of G.

(2) We show in the proof of the last part that given a Sylow p− subgroup P and a subgroup
H of order pk, there exists g ∈ G such that gHg−1 ⊆ P . If H is normal subgroup of G
then this implies that H ⊆ P for every Sylow p− subgroup P ⊆ G.

Exercise 7. Let g ∈ G then since K is a normal subgroup of G, we obtain that gPg−1 ⊆
gKg−1 = K. Since gPg−1 is also Sylow P subgroup ofK we obtain by the second Sylow theorem
that there exists k ∈ K such that kPk−1 = gPg−1. This implies that (gk−1)P (gk−1)−1 = P
and hence gk−1 ∈ NG(P ). Therefore we obtain that G = KNG(P ). □

Exercise 8. Denote by Qn the wreath product Z/pZ ≀ . . . ≀ Z/pZ, where the latter product
contains n copies of Z/pZ. Firstly, we prove by induction that Qn is a subgroup of Spn for
all n ≥ 1, i.e. there exists an injective group homomorphism Qn ↪→ Spn . For n = 1, this is
clear, as the subgroup of Sp generated by a p-cycle is isomorphic to Z/pZ. Suppose the equality
holds for all 1 ≤ k < n and let us prove it for n. As Qn = Qn−1 ≀ Z/pZ and we have injections
Qn−1 ↪→ Spn−1 and Z/pZ ↪→ Sp, the cited injective homomorphism Sn ≀ Sm → Snm induces an
injective homomorphism Qn = Qn−1 ≀ Z/pZ ↪→ Spn , which proves the claim.

The exponent of p in the prime decomposition of |Spr | = pr! is p
pr−1
p−1 . Indeed, to find the desired

value we have to count the number of multiples of pk which are smaller than pr for 0 < k ≤ r.
For pk this number is pr−k, so their sum is:

r∑
k=1

pr−k =
r−1∑
k=0

pk =
pr − 1

p− 1

Note: This is a particular case of a more general result, called Legendre’s formula.
Let us now prove by induction that

|Qn| = p
pn−1
p−1

to conclude. For n = 1 the order is clearly equal to p. Suppose the equality holds for all
1 ≤ k < n and let us prove it for n. In fact, it suffices to observe that, by definition:

|Qn| = p|Qn−1|p

Hence, by the above said, Qr is indeed a Sylow p-subgroup of Spr .
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Exercise 9. We start by considering the prime decomposition |G| = 48 = 24 · 3. By theorem
10 of the lecture notes, we know that the number n2 of Sylow 2-subgroups must satisfy both
n2 = 1 (mod 2), and n2|3. Therefore we know that n2 ∈ {1, 3}. If n2 = 1, then the unique
Sylow 2-subgroup P2 is normal in G since Sylow 2-subgroups are conjugate to each other. If
n2 = 3, consider the action of G on the set of Sylow 2-subgroups of G. Since this is an action
of G on a 3-elements set, this corresponds to a group homomorphism φ : G → S3. By the first
isomorphism theorem we obtain that G/ ker(φ) ∼= im(φ). But since all Sylow 2-subgroups are
conjugate to each other, φ is not the trivial map which means that ker(φ) ̸= G. Since the kernel
cannot be trivial (because of size issues), it follows that 1 ̸= ker(φ) ◁ G is a non-trivial normal
subgroup.


